第110章 彭罗斯阶梯(1 / 2)
彭罗斯阶梯是一个有名的几何学悖论,指的是一个始终向上或向下但却走不到头的阶梯,可以被视为彭罗斯三角形的一个变体,在此阶梯上永远无法找到最高的一点或者最低的一点。
彭罗斯阶梯不可能在三维空间内存在,但只要放入更高阶的空间,彭罗斯阶梯就可以很容易的实现。如同莫比乌斯环、克莱因瓶。
如果说帕特对存在着那样的不动点感到惊奇的话,那么他将对这样的台阶更为惊奇。他可以永远地沿着它转圈,但却总是在向上攀登,而且一次又一次地回到他原来的位置!这可能吗?不可能!只是由于我们的眼睛受图画的迷惑而认为这种台阶是存在的.而这些不可能形体正是它在视觉上的类似产物。
我简单的跟胖子讲了一下,胖子似懂非懂的点了点头:“所以你是说一个不可能的事情,然后被咱们遇到了是么?”
“不尽然!”我接着说道:“彭罗斯阶梯不可能的原因就是它在三位空间中,但是如果是二维空间,就很容易实现了。”
见胖子还是有些听不懂,我也不解释了,就把手枪掏了出来,接着就拉开了保险,走到了墙壁的跟前。
“首先,咱们走的是直线对么?如果这个假设是错误的,那么驳论的第一个条件也就成立了,我们并没有一直在往前走。”说完之后,我将手枪的背部直接贴在了上墙,然后直接扣动了扳机,碰的一声墙响,按住手枪的右手被墙壁一震,感觉都有点麻了。
“你说就行了啊,开枪做什么?”胖子揉了揉耳朵,有些抱怨的说道。
“我现在把枪顶在墙上开,子弹肯定会不走错路,也不会拐弯,如果我们走的是值钱,那么这个子弹就会一直飞行下去,最后会紧挨着这边墙落在地上。”我看了看依旧坐在地上的胖子说道。
胖子似乎一下子明白过来了,猛地一拍脑门跟着说道:“我明白了,那子弹要是打在另外一边的墙上,那他酿的就证明了我们一直是在绕圈子,不过我们这不是一直在往下走么,子弹应该打在墓道的顶上才对。”
“那要是没有打在墓道顶上呢?”我紧跟着追问道。
“要是没有打在墓道……那就是说,我们一直在一个水平的位置绕圈子?”胖子也是明白了我的意思,不过当他低下头看到那些阶梯的时候,就又跟着问道:“那这些阶梯是怎么回事?”
“眼睛是会骗人的,这墙上地下都被涂了能够吸收光的东西,目的应该就是为了控制人的视线,如果我猜的没错,这些阶梯与阶梯之间,每隔一段距离就会有一个错梯,接触光与影的原理,将我们下降的高度差给补回来,如此一来,我们能够回到原地这件事情就说的通了。”我继续解释道。
“你说的有道理,不过就算是圈子,也要有出口和入口啊,咱们也兜了两个圈子了,一个口子也没看到了。”胖子现在虽然明白了我的意思,但是也同时提出了一个我现在也挺纳闷的问题。
“站在结果上去假设问题,只要有一个能够关上再打开的门,在我们到了通道另一侧的时候转换一下,这种门可以是左右式的,也可能是上下式的,总之是可以实现的,咱们先来证明第一个假设吧,这个墓道,是一个大的水平圆。”我说完之后,就示意胖子起来继续走,我们现在的任务就是找到子弹。
如果我们找不到子弹,那就真的麻烦了,我心里一点底都没有,这子弹如果没有打在墙上而是消失了,我想一想都会头皮发麻。
往前走了五分钟左右,让我回头皮发麻的事情并没有出现,我们找到了那颗子弹,我前面是在左手边这面墓墙上打的一枪,而那颗子弹……
↑返回顶部↑